
Towards Service Composition Based on Mixture 
of different things 

Dr.I.Lakshmi 
Assistant Professor, 

Department of Computer Science, 
Stella Maris College, Chennai, Tamil Nadu, India 

G.D. DhanaLakshmi 
Assistant Professor, 

Department of Computer Science, 
Stella Maris College, Chennai, Tamil Nadu, India 

Abstract- Mashup is a sign of Web 2.0 and draws in both 
industry and the educated community as of late. It alludes to 
an impromptu synthesis innovation of Web applications that 
permits clients to draw upon substance recovered from 
outside information sources to make completely new 
administrations. Contrasted with conventional "designer 
driven" piece innovations, e.g., BPEL and WSCI, mashup 
gives an adaptable and simple of-utilization path for 
administration organization on web. It makes the customers 
allowed to create administrations as they wish and in addition 
disentangles the organization assignment. This paper makes 
two commitments. Firstly, we propose the mashup building 
design, expand current SOA model with mashup and break 
down how it encourages administration arrangement. Besides, 
we propose a mashup part model to assist engineers influence 
with creating their own composite administrations. A 
contextual analysis is given to represent how to do 
administration arrangement by mashup. This paper 
additionally talks about some fascinating points about 
mashup. 

1. INTRODUCTION

Administration Oriented Architecture (SOA) has brought 
another worldview and innovation transformation to 
conventional programming advancement. It uses 
administrations as fundamental builds and presents three 
distinct parts, administration supplier, administration 
shopper and administration dealer and also their 
connections. Administrations in SOA are "inexactly 
coupled": they are created and facilitated by distinctive 
suppliers, portrayed in particular standard interface (e.g., 
WSDL), distributed in an open registry (e.g., UDDI), and 
can be found and asked for through standard conventions 
(e.g., SOAP).  
SOA is changing programming advancement come closer 
from conventional "item driven" assembling, to "buyer 
driven" administration structure. Upheld by SOA 
administration structure advances, e.g. BPEL [6], WSCI 
[5], new business procedure, application or arrangement 
can be inherent a moderately quick and minimal effort 
route through the piece of conveyed administrations even in 
heterogeneous situations. In any case, current 
administration organization programming model and 
devices are for the most part intended for expert SOA 
designers to construct SOA programming or arrangement 
in order to take care of business issue in big business' mind 
boggling IT environment. Despite the fact that these 
strategies are capable to address venture SOA issue, there 
are three essential issues existing. As a matter of first 
importance, these advances include moderately solid 
prerequisites overhead about designer's ability and 

supporting base. SOA designers more often than not have 
to spend real push to ace numerous SOA advancements, 
e.g. BPEL, WSDL, SCA (Service Component 
Architecture), and in addition instruments, e.g. outline time 
IDE devices, and runtime middleware servers (SCA server 
or BPEL server). The vast majority of these devices interest 
for real venture on equipment and programming 
framework; Secondly, these innovations cannot bolster 
administration creation's customization on the fly.  
The SOA administration sythesis configuration, 
advancement and testing are normally led in IDE apparatus 
first as per client prerequisites, and afterward conveyed on 
runtime server. After arrangement, the sythesis rationale 
can scarcely be redone effortlessly as indicated by the 
progressions of composite administration purchaser's 
necessities, as this includes a long lifecycle from 
configuration/improvement/testing to sending. At last, 
these innovations can't well backing the sythesis of legacy 
or existing web applications which don't or can't give web 
administration interfaces. These issues have turned into the 
obstructions for speedier and more extensive selection of 
SOA, particularly in the promising Web 2.0 worldview. 
Too known, Web 2.0 alludes to the up and coming era of 
web applications characterized by T. O'Reilly. The center 
Web 2.0 standards are "basic, low-boundary and quick" and 
"each client himself is the inside on internet"[6]. It tries to 
augment the shopper's inventiveness for new 
administrations so even "grandmother" can without much 
of a stretch fulfill an application as she wishes. In this way, 
we require new SOA administration creation advances in 
Web 2.0 worldview (counting programming model and its 
relating apparatuses) for clients with low programming 
ability prerequisites, which ought to address end-client's 
necessities on adaptable structure and its customization of 
administrations/information/applications inside of big 
business or on the Web. Particularly the new advancements 
ought to bolster: 
 Leveraging web as the design-time and runtime tool

for service composition, to reduce (a lot) overhead to
(made up of different things) service people (who use a
product or service)

 On-the-fly customization and use/military service to
make the service composition to be more (able to reply
or react/quick to respond) for consumer's needed thing
changes

 Easy reuse and remix of existing applications and data
which can be accessed through the web.

The coming into view of web 2.0 related technologies, e.g. 
REST, AJAX ((not happening at the same time) JavaScript 

I.Lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1041-1047

www.ijcsit.com 1041



and XML), Wiki, provides opportunities for meeting these 
needed things. There is a web 2.0 idea called "mixture (of 
different things)", which allows people (who use a product 
or service) to draw upon content retrieved from external 
data sources (web services, data store, web application) to 
create wholely new and new and interesting services [7]. In 
our opinion, mixture (of different things) (almost 
completely/basically) introduces a much simpler, more 
(producing a lot for a given amount of money), self-served 
approach for service (complex piece of music) that reduces 
(a lot) the complex difficulty and (things that block or stop 
other things) of SOA service composition  
Therefore, every person (who uses a product or service) can 
compose his/her own service applications only by "drag 
and drop" action within a web browser. Obviously, mixture 
(of different things) is a very "consumer-centric" and 
lightweight service composition technology, which would 
be more related to all people (who use a product or service) 
all over internet in Web 2.0 way of thinking. As a new 
newly-visible idea, mixture (of different things) has 
attracted both industry and the world of college. This paper 
tries to explore how mixture (of different things) helps 
service (work of art/artistic combining of elements) and 
related technical issues. It is organized as follows: In 
Section 2, we are going to carefully study some ideas 
brought by mixture (of different things), including mixture 
(of different things) (related to the beautiful design and 
construction of buildings, etc.), SOA extension with 
mixture (of different things) and mixture (of different 
things) based service composition. Section 3 proposes our 
mixture (of different things) part-related model and runtime 
(machines/methods/ways); Section 4 presents a mixture (of 
different things) case study; Section 4 on the end/end result 
and future work. 
 

2. ANALYSIS OF MASHUP 
2.1 Background for Mashup 
The term mashup began in the sound area, alluding to 
specialists remixing two (or more) recordings into another 
substance. The establishing illustration is the Gray 

collection – a mashup of The Beatles' White Album and 
Jay-Z's dark collection [9]. Where the music business has 
had blended responses to mashups (suit was typically 
brought against the Gray collection. Wikepedia 
characterizes mashup as: a site (URL) or web application 
that uses content from more than one source to make a 
totally new administration [17].  
Mashup originates from the accentuation on intelligent 
client cooperation way in which they total and line together 
outsider information. It is determined of the advancement 
of web figuring innovation, particularly prevalence of web 
2.0. Web 2.0 makes the website page no more a "static" 
markup archive (e.g., HTML), yet more "dynamic" 
intuitive information application that can be devoured (by 
RSS, 
REST or ATOM). For AJAX and Rich Internet Application 
(RIA) change the site page control from DOM (Document 
Object Model) to Widget (e.g., DOJO [11]), the 
information contained in site page is sorted out in more 
componentized way.  
Besides, with these "web parts", the shoppers can even 
fulfill some business rationales in the web program as 
opposed to getting to the layer living in the server side. As 
more undertakings empower business RSS/ATOM/REST 
support in their administrations, mashup even spreads roots 
over the Web, drawing upon substance and usefulness 
recovered from information sources that lay outside of its 
hierarchical limit 
 
2.2 Mashup Architecture 
As a rule, mashup is generally done at the web program, by 
"move and customize" applications from diverse sources 
together. On the other hand, there must be some backend 
foundation to bolster mashup. From D.Merrill [7], mashup 
application is structurally involved three distinct members: 
API/content suppliers, the mashup facilitating website, and 
the buyer's Web program, which is fundamentally the same 
to the mainstream three-level construction modeling. The 
building design is appeared in Figure 1 

 
USER BROWSER          HOSTING SITE 

 
 
 
 
 

 
 

Figure 1 Mashup Architecture 
 

 
 

PORTAL 
     HTML  
JAVA SCRIPT 

JSP/PHP/CGI

 

ATOM/REST/
RSS/SOAP 

I.Lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1041-1047

www.ijcsit.com 1042



The API/content suppliers. These are the (occasionally 
unwitting) suppliers of the substance being crushed up. To 
encourage information recovery, suppliers frequently 
uncover their substance through Web conventions, for 
example, REST, Web Services, and RSS/Atom. 
Nonetheless, numerous intriguing potential information 
sources don't( (yet) advantageously uncover APIs. Mashups 
that concentrate content from locales like Wikipedia, TV 
Guide, and for all intents and purposes all administration 
and open area Web destinations do as such by a procedure 
known as screen scratching [7]. In this setting, screen 
scratching suggests the procedure by which an instrument 
endeavors to concentrate data from the substance supplier 
by endeavoring to parse the supplier's Web pages, which 
were initially expected for human consumption.  
The mashup facilitating site. It is the place the mashup is 
facilitated. Because this is the place the mashup rationale 
lives, it is not as a matter of course where it is executed. On 
one hand, mashups can be executed comparatively to 
customary Web applications utilizing server-side element 
content era advancements like Java servlets, CGI, PHP or 
ASP. Then again, crushed substance can be produced 
specifically inside of the customer's program through 
customer side scripting (e.g., JavaScript) or applets. This 
customer side rationale is frequently the blend of code 
specifically inserted in the mashup's website pages and in 
addition scripting API libraries or applets (outfitted by the 
substance suppliers) referenced by these Web pages. 
Mashup utilizing this methodology can be termed rich web 
applications (RIAs), implying that they are exceptionally 
situated towards the intelligent client experience.  
The advantages of customer side pounding incorporate less 
overhead for the mashup server (information can be 
recovered specifically from the substance supplier) and a 
more consistent client experience (pages can demand 
redesigns for segments of their substance without 
refreshing the whole page). The Google Maps API is 
expected for access through program side JavaScript, and is 
a case of customer side innovation. Frequently mashup 
utilizes a blend of both server and customer side rationale 
to accomplish their information conglomeration.  
The shopper's Web program. It is the place the 
application is rendered graphically and where client 
collaboration happens. As portrayed above, mashups 
frequently utilize customer side rationale to amass and 
create the pounded content. 
 
2.3 SOA Extension with Mashup 
Mashup is basically a procedure that coordinates 
information/content from distinctive sources on the web. 
Hence, it is basically an administration arrangement style 
from SOA point of view. Considering the mashup 
structural planning and parts in the last area, we expand the 
essential SOA parts (supplier, representative and customer) 
as per the mashup construction modeling in the last 
segment. 
Mashup Component Builder (MCB): administrations 
must be given by a few suppliers, each of whom has its 
own determination and utilization. For instance, the 
administrations may be web administrations, Enterprise 

JavaBeans or legacy frameworks. The principal 
inconvenience for mashup is the interoperability of these 
administrations. Then again, mashup is predominantly the 
organization at UI level, while current arrangement at 
rationale level. Here, the Mashup Component Model is the 
augmentation of administration supplier. MCB chooses 
administrations from the Service Catalog (e.g., UDDI or 
from screen scratching) and assumes the liability to 
embody every one of the administrations in a standard part 
demonstrate with UI presentation (will be talked about 
later). At that point the 
Mashup Component is then distributed to an archive.  
Mashup Server: the mashup server includes three 
segments. The Service Catalog is amazingly the UDDI 
server to distribute administrations from suppliers. The 
Mashup Component Repository stores all mashup parts 
created by the MCB. The Monitoring gives the execution 
assessment, (for example, dashboard) of the mashup parts. 
It guarantees the purchasers pick the best possible mashup 
parts and the suppliers can reconfigure those lacking ones.  
Mashup Consumer: the mashup shoppers select the 
correct mashup parts from the mashup server, create their 
own particular application in the program. At that point the 
mashup lifecycle can be delineated in Figure 2. Clearly, the 
mashup is the expansion of current SOA worldview. It 
doesn't break the fundamental SOA standards 
(administrations are self-depicted and inexactly coupled) 
while making administrations all the more effectively and 
outwardly used by shoppers. The center issue here is the 
mashup part. In view of conventional administration idea, 
(for example, web administrations), mashup part empowers 
the interoperability between distinctive administration 
suppliers at UI level 

 
Figure 2 SOA Extension with Mashup 

 
2.4 Mashup and Service Composition 
As mashup is generally new idea, it might confound to 
recognize mashup and customary administration  
organization. From our perspective, composite 
administrations are more a get together of existing 
administrations than "green field" improvement [9]– they 
are done at interface level and don't need to be Web-based. 
There is the always expanding custom of composite 

I.Lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1041-1047

www.ijcsit.com 1043



applications, which are commonly in light of SOAP Web 
administrations and much of the time woven together with 
BPEL and created by expert software engineers. Such 
structure style is fundamentally at "interface" level rather 
than "application" level, which implies the client ought to 
have full appreciation of administration interfaces. It is 
particularly too hard to those purchasers without expert 
learning. Composite applications additionally tend to utilize 
a more seasoned era of programming dialects and 
advancements that have all the more overhead and 
function. What's more, there is an excess of uncovered 
pipes and foundation.  
Mashup, then again, utilizes "surprisingly straightforward, 
fundamental procedures for interfacing things together" [9]. 
This incorporates guerilla-style advancement systems that 
convey results in inclination to formal, forthright designing. 
We abridge the mashup center elements as takes after:  
 More Reusable: Compared to current SOA synthesis 

advancements, for example, BPEL and WSCI, mashup 
is more "coarse-grained" at the application level. Each 
mashup building piece (concoction API), has its own 
connection and business rationale, for the most part, 
blend APIs contain the vast majority of normal 
business rationale, and it is a mix of information, 
procedure and UI. In this way, the mashup 
administrations are more reusable.  

 Web-Based: This implies utilizing JavaScript 
incorporates of another webpage's product, clear Web 
administrations and sustains construct specifically with 
respect to top of HTTP, and JSON (JavaScript Object 
Notation) for information recovery and remixing [9]. 
Also, with activities like Open AJAX, we may get first 
genuine traditions for part interoperability in the 
program."  

 Light Weight: Additionally, mashup is a lightweight 
strategic combination of multi-sourced applications or 
substance into a solitary advertising. Since mashup 
influences information and administrations from open 
Web destinations and Web applications, they're 
lightweight in usage and fabricated with a insignificant 
measure of code. Their essential business advantage is 
that they can rapidly meet strategic needs with 
decreased advancement costs and enhanced client 
fulfillment.  

 End Consumer Centric: blend should bolster 
programming for end customer, not engineer, without 
complex programming environment. Each customer 
can create his/her own administration applications just 
by "move and customize" activity inside of a web 
 
3. MASHUP COMPONENT MODEL AND RUNTIME 

3.1 Mashup Component Model 
From the mashup view, web is no longer represented as a 
markup document, but a data driven application. Therefore, 
there must be a well-defined component model that can 
encapsulate the data from multiple sources and manipulate 
the existing web resources through the standard services 
(REST, ATOM/RSS, and so on). In our opinion, a mashup 
component is a module which consists of a set of UI 
components and a set of backend services (either local or 

remote) binding into the UI components. The mashup 
hosting environment should provide a “container” for the 
component and take the overall control of process logic, 
send and receive data from external services and route it to 
the corresponding 
components. We classify the component model into three 
elements, as shown in Figure 3: 
 UI Component: UI component represents as a set of 

widgets in the browser (a window, a button, a drop-
down list, etc). Enhanced by AJAX, UI components 
and its binding service component can be connected 
and updated dynamically. UI component masks the 
service components details to the consumer so as the 
composition is done at UI level. In other words, to 
consumers, UI component is the unique entity that 
survives in the mashup applications. 

 Service Component: Service component represents 
data manipulation interface which will contain the data 
content, for example, a web service interface, which 
can be accessed by SOAP and REST; or it can be a DB 
interface, which can retrieve and store data in local or 
remote database. Data standardization is achieved in 
simple script by web container or service container. In 
our current implementation, the service component is 
mainly the web services or services with open APIs 
(such as GoogleMap). 

 Action Component: Action component acts like the 
connector between UI components and service 
components. For example, it defines an action driven 
by events (e.g., onClick or onMouseOver). It can be an 
action which changes the display value of a UI 
component, or one that invokes a service component 
interface. 

 
Figure 3 Mashup Component Model 

 
3.2 Mashup Component Runtime 
All mashup lifecycle lives in the web program. At runtime, 
a mashup segment is instantialized as a  JavaScript class. 
Once the shoppers select the mashup segment (UI segment 
precisely) and drag it to the program, a bit of .js code will 
embedded into the HTML archive.  

I.Lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1041-1047

www.ijcsit.com 1044



 

 
Figure 4 Sequence Diagram of Mashup Component Runtime 

 
 

Figure 4 demonstrates the grouping outline of mashup 
runtime. The UI part is an arrangement of gadgets 
portrayed in HTML, and registers itself to the web 
program. It is on account of once the client works the UI 
part (fill in content or present a structure), all the 
information are handled by program. In our present usage, 
the solicitations are sent to administration segments in 
SOAP, we apply the AJAX example to demand, parse and 
get the reaction. So the web program rails a DOM occasion 
and afterward produces the XMLHTTPRequest object, 
which is the center in AJAX. A center inconvenience here 
is the XML parsing by XMLHTTPRequest in distinctive 
program. Conjuring web administrations in the program 
needs the XML parsing settled in program itself. Be that as 
it may, to adapt to the various naming spaces in SOAP 
message, the capacity of program varies from each other. In 
Mozilla Firefox, parsing XML to a DOM tree is simple (as 
Firefox gives getElementsByTagNameNS() to recover 
XML to DOM).  
 
Notwithstanding, in Internet Explorer, it needs the mark of 
JavaScript and includes a few inconveniences. So we 
extend the XMLHTTPRequest to execute the Action 
Component so as it can process SOAP ask for/reaction in 
distinctive program. The Action Component gives a 
capacity invoke handlers that procedures the web 
administration call, SOAP ask for/reaction and transport, as 
the bit of code taking after: 

 
 
Besides XMLHTTPRequest, the Action Component creates 
a SOAP Envelope and a callback function as well. Both 
should register to XMLHTTPRequest for further use. Once 
XMLHTTPRequest parses the SOAP envelope, the Action 
Component inserts a add_hanlder() function to intercept 
the SOAP to invoke handlers, and invokes the invoke() 
function to send the request to the service component. After 
the service component finishes the application logic, it 
serializes the results in the SOAP response. Then Action 
Component invokes XMLHTTPRequest parses the SOAP 

I.Lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1041-1047

www.ijcsit.com 1045



DOM and invoke() invokes the callback function to update 
the UI component. The invoke() function is as follows: 

 
 

As discussed before, users only focus on UI level 
composition, so the data exchange between two mashup 
components is processed by their own Action Components. 
Action Components is a piece of JavaScript code and 
cannot directly pass the data type to SOAP envelope, so we 
use JSON [12] as data wrapper. JSON is a lightweight data 
exchange format. It is easy for humans to read and write 
and for machines to parse and generate. 
 

4.  DISCUSSION 
4.1 Highlights of Mashup 
The primary fascination of mashup is that it has the 
potential for self-benefits that end shoppers can  
hypothetically make. It likewise performs synthesis in the 
program. This gives a kind of safe "sandbox" where clients 
can test securely with capable apparatuses without 
influencing the conventional IT improvement, organization, 
and bolster forms. Also, apparently, mashup instruments 
would give programmed forming, security, and other 
required undertaking programming qualities. The greater 
part of this possibly drops the expense of advancement 
colossally in light of the fact that an end buyer could 
simply get together and make, test, and share a mashup in a 
couple of hours, rather than the difficult and tedious 
expense of planning, architecting, outlining, venture 
overseeing, testing, and keeping up the product utilizing the 
tip top and costly abilities of the IT division.  
Another real fascination of mashup is known as the 
mechanization predicament. In today's learning specialist 
concentrated organizations, repetition procedures are not 
the standard and are progressively mechanized through 
different instruments today. As of right now, on the other 
hand, we need apparatuses that really empower along these 
lines of working; end-client guided production of 
programming, IT strategies that energize the presentation of 
corporate data in RSS and XML nourishes, and great 
mashup improvement instruments that truly require no 
preparation to utilize. Additionally, the Global SOA [7] is 
getting to be bigger every last day, giving every one of us, 
buyers and organizations both, with an intense stock of 
exceptional administrations and information to weave into 
our mashups, if just there is a suitable "weaver". At present 
we can discover web as a model for best practices in such 

manner, for example, gadget. In any case, mashup right 
now is helpful for little and basic application mix rationale. 
It is not suggested doing complex business process 
reconciliation by mashup. Gartner cautions that, in light of 
the fact that mashups join information and rationale from 
numerous sources, they're powerless against 
disappointments in any of those sources [8]. It is on the 
grounds that unpredictable business handles normally needs 
cooperation among multi accomplices rather than a solitary 
driven client, and requires capable and trustworthy 
foundation to guarantee long-run and exchanges. As 
mashup is actually information conglomeration from multi 
sources and typically done at web program, once there is 
session refutation or system inaccessible, the value-based 
properties can't be ensured. 
4.2 Challenges to Mashup 
The most concerning issue of mashup is the information. 
Mashup engineers may likewise need to battle with a few 
issues that IT coordination directors may not, one of which 
is information contamination. As a major aspect of their 
application outline, numerous mashups request open client 
info. As confirm in the wiki application area, this is a 
twofold edged cutting edge: it can be very effective in light 
of the fact that it empowers open commitment and best-of-
breed information development, yet it can be liable to 
conflicting, inaccurate, or deliberately deceptive 
information passage. The last can cast questions on 
information reliability, which can at last trade off the worth 
gave by the mashup. Like the customary endeavor IT 
supervisors that get themselves face to the test of 
coordinating legacy information sources (e.g., to make 
participate dashboards that reflect current business 
conditions), mashup designers confront the challenges of 
determining shared semantic significance between the 
multi-source datasets. Notwithstanding information missing 
or deficient information mappings, they might either find 
the information they need to incorporate is not suitable, so 
it needs further process. For instance, the client opportunity 
record may be entered conflictingly, utilizing regular 
contractions for names, (for example, "CustomerOpp" in 
one CRM framework and "Cus Opp" in another), making 
mechanized thinking about equity troublesome, even with 
great heuristics. Another host of incorporation issues 
confronting mashup engineers emerge when screen 
scratching strategies must be utilized for information 
procurement. As examined in the past area, inferring 
parsing and procurement devices and information models 
requires huge figuring out exertion. Indeed, even in the best 
situation where these instruments and models can be made, 
all it takes is a refactoring of how the source site introduces 
its substance (or mothballing and deserting) to break the 
mix process, and cause mashup application disappointment. 
Microformat [14] is a rising innovation that empowers 
website pages can be perused by both individuals and 
machines. Be that as it may, there are just a couple 
microformat determinations presently, and most sites are 
not utilizing microformats. Screen scratching will be 
getting less demanding if sites are taking after the semantic 
gauges in preparing their information over the web. 
 

I.Lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1041-1047

www.ijcsit.com 1046



CONCLUSION AND FUTURE WORK 
In this paper, we deeply investigate mashup, which is a 
web-based service composition that simplifies the 
consumers to create new applications just by very simple 
actions. We analyze the technical background of mashup, 
introduce the mashup architecture and make careful 
comparison with current SOA composition approaches. We 
propose our solution to mashup, design a mashup 
component model and the runtime mechanisms. As mashup 
is a new and immature technology, there are still a lot of 
problems left. In our future work, we will mainly focus on 
the runtime management and maintenance of mashup. 
 

REFERENCES 
[1].  M. Brambilla, S. Ceri, S. Comai, C. Tziviskou. Exception Handling 

in Workflow-Driven Web Applications. International Conference on 
World Wide Web (WWW) 2005, pp170-179, ACM 1595930469. 
Chiba, Japan, May 10-14, 2005. 

[2].  Schraefel, m. c., Smith, D. A., Russell, A. and Wilson, M. L. (2006) 
Semantic Web meets Web 2.0 (and vice versa): The Value of the 
Mundane for the Semantic Web. Submitted to The 5th International 
Semantic Web Conference, Athens, GA, USA.  

[3].  Web Service Choreography Interface 1.0 Specification, 
http://dev2dev.bea.com/techtrack/wsci.jsp , 2002. 

[4].  T. Andrews et al. Business Process Execution Language (BPEL), 
version 1.1. Technical report, BEA Systems and International 
Business Machines Corporation, Microsoft Corporation, SAP AG 
and Siebel Systems, May 2003. 

[5].  Resource Description Framework (RDF). http://www.w3.org/RDF/ 
[6]. T O’Reilly. What is Web 2.0--Design Patterns and Business Models 

for the next Generation of Software. 
http://scholar.google.com/url?sa=U&q=http://intervention. 
ch/rebell.tv/presse/O%27Reilly%2520Network_%2520What%2520I
s%2520Web%25202.pdf 

[7].  Duane Merrill. Mashups: The new breed of Web app—An 
introduction to mashups. http://www-
128.ibm.com/developerworks/xml/library/x-mashups.html  

[8].  Gartner's 2006 Emerging Technologies Hype Cycle Highlights Key 
Technology Themes. http://www.gartner.com/it/page.jsp?id=495475 

[9].  Dion Hinchcliffe. The quest for enterprise mashup tools 
http://blogs.zdnet.com/Hinchcliffe/?p=59 

[10].  Dion Hinchcliffe. Web 2.0 and SOA: Contrived or Converging? 
http://web2.wsj2.com/web_20_and_soa_contrived_or_con 
verging.htm 

[11].  http://dojotoolkit.org/ 
[12].  http://www.json.org/ 
[13].  http://www.fedex.com/ 
[14].  http://microformats.org/ 
[15].  http://www.kapowtech.com/ 
[16].  http://www.openajax.net/wordpress/ 
[17].  Wikipedia. Entry for "The Grey Album". Available at: 

http://en.wikipedia.org/wiki/The_Grey_Album Accessed May 20, 
2006.. 

 
 

I.Lakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1041-1047

www.ijcsit.com 1047




